Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Front Plant Sci ; 15: 1389605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650698

RESUMEN

Fusarium graminearum, the causal agent of Fusarium head blight (FHB), produces various mycotoxins that contaminate wheat grains and cause profound health problems in humans and animals. Deoxynivalenol (DON) is the most common trichothecene found in contaminated grains. Our previous study showed that Arabidopsis-expressing F. graminearum trichothecene 3-O-acetyltransferase (FgTRI101) converted DON to 3-acetyldeoxynivalenol (3-ADON) and excreted it outside of Arabidopsis cells. To determine if wheat can convert and excrete 3-ADON and reduce FHB and DON contamination, FgTRI101 was cloned and introduced into wheat cv Bobwhite. Four independent transgenic lines containing FgTRI101 were identified. Gene expression studies showed that FgTRI101 was highly expressed in wheat leaf and spike tissues in the transgenic line FgTri101-1606. The seedlings of two FgTri101 transgenic wheat lines (FgTri101-1606 and 1651) grew significantly longer roots than the controls on media containing 5 µg/mL DON; however, the 3-ADON conversion and excretion was detected inconsistently in the seedlings of FgTri101-1606. Further analyses did not detect 3-ADON or other possible DON-related products in FgTri101-1606 seedlings after adding deuterium-labeled DON into the growth media. FgTri101-transgenic wheat plants showed significantly enhanced FHB resistance and lower DON content after they were infected with F. graminearum, but 3-ADON was not detected. Our study suggests that it is promising to utilize FgTRI101, a gene that the fungus uses for self-protection, for managing FHB and mycotoxin in wheat production.

2.
Appl Microbiol Biotechnol ; 108(1): 152, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183477

RESUMEN

Trichothecenes are a structurally diverse family of toxic secondary metabolites produced by certain species of multiple fungal genera. All trichothecene analogs share a core 12,13-epoxytrichothec-9-ene (EPT) structure but differ in presence, absence and types of substituents attached to various positions of EPT. Formation of some of the structural diversity begins early in the biosynthetic pathway such that some producing species have few trichothecene biosynthetic intermediates in common. Cytochrome P450 monooxygenases (P450s) play critical roles in formation of trichothecene structural diversity. Within some species, relaxed substrate specificities of P450s allow individual orthologs of the enzymes to modify multiple trichothecene biosynthetic intermediates. It is not clear, however, whether the relaxed specificity extends to biosynthetic intermediates that are not produced by the species in which the orthologs originate. To address this knowledge gap, we used a mutant complementation-heterologous expression analysis to assess whether orthologs of three trichothecene biosynthetic P450s (TRI11, TRI13 and TRI22) from Fusarium sporotrichioides, Trichoderma arundinaceum, and Paramyrothecium roridum can modify trichothecene biosynthetic intermediates that they do not encounter in the organism in which they originated. The results indicate that TRI13 and TRI22 could not modify the intermediates that they do not normally encounter, whereas TRI11 could modify an intermediate that it does not normally encounter. These findings indicate that substrate promiscuity varies among trichothecene biosynthetic P450s. One structural feature that likely impacts the ability of the P450s to use biosynthetic intermediates as substrates is the presence and absence of an oxygen atom attached to carbon atom 3 of EPT.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Tricotecenos , Especificidad por Sustrato , Sistema Enzimático del Citocromo P-450/genética , Metabolismo Secundario
3.
Plants (Basel) ; 12(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37895995

RESUMEN

Fusarium head blight (FHB) is a destructive fungal disease of wheat that causes significant economic loss due to lower yields and the contamination of grain with fungal toxins (mycotoxins), particularly deoxynivalenol (DON). FHB disease spread and mycotoxin contamination has been shown to worsen at elevated CO2, therefore, it is important to identify climate-resilient FHB resistance. This work evaluates whether wheat with the Fhb1 quantitative trait locus (QTL), the most widely deployed FHB resistance locus in wheat breeding programs, provides reliable disease resistance at elevated CO2. Near-isogenic wheat lines (NILs) derived from either a highly FHB susceptible or a more FHB resistant genetic background, with or without the Fhb1 QTL, were grown in growth chambers at ambient (400 ppm) and elevated (1000 ppm) CO2 conditions. Wheat was inoculated with Fusarium graminearum and evaluated for FHB severity. At elevated CO2, the NILs derived from more FHB-resistant wheat had increased disease spread, greater pathogen biomass and mycotoxin contamination, and lower rates of DON detoxification; this was not observed in wheat from a FHB susceptible genetic background. The Fhb1 QTL was not associated with increased disease severity in wheat grown at elevated CO2 and provided reliable disease resistance.

4.
Plant Direct ; 7(10): e538, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37854878

RESUMEN

Plants respond to fungal infections by activating defense genes including producing reactive oxygen species (ROS). The fungus Fusarium graminearum causes Fusarium head blight (FHB), a serious disease of wheat and barley. FHB results in crop yield loss and contaminates grain with mycotoxins. In a prior study, we discovered that chitin induces tissue-specific ROS burst in wheat. However, it is unknown whether other fungal cell wall components could induce defense response in wheat. Therefore, we evaluated ROS and defense gene responses in different wheat tissues that had been treated with chitin, laminarin, or both. Different ROS patterns were induced in wheat treated with laminarin or chitin. Furthermore, we found that ROS were enhanced in wheat tissues treated with both chitin and laminarin. This study provides novel information for enhancing plat immunity to increase plant resistance.

5.
Front Microbiol ; 14: 1271219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881249

RESUMEN

Changing atmospheric composition represents a source of uncertainty in our assessment of future disease risks, particularly in the context of mycotoxin producing fungal pathogens which are predicted to be more problematic with climate change. To address this uncertainty, we profiled microbiomes associated with wheat plants grown under ambient vs. elevated atmospheric carbon dioxide concentration [CO2] in a field setting over 2 years. We also compared the dynamics of naturally infecting versus artificially introduced Fusarium spp. We found that the well-known temporal dynamics of plant-associated microbiomes were affected by [CO2]. The abundances of many amplicon sequence variants significantly differed in response to [CO2], often in an interactive manner with date of sample collection or with tissue type. In addition, we found evidence that two strains within Fusarium - an important group of mycotoxin producing fungal pathogens of plants - responded to changes in [CO2]. The two sequence variants mapped to different phylogenetic subgroups within the genus Fusarium, and had differential [CO2] responses. This work informs our understanding of how plant-associated microbiomes and pathogens may respond to changing atmospheric compositions.

6.
Plant Physiol ; 193(4): 2691-2710, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37610244

RESUMEN

Fusarium head blight (FHB) of barley (Hordeum vulgare) causes yield losses and accumulation of trichothecene mycotoxins (e.g. deoxynivalenol [DON]) in grains. Glucosylation of DON to the nontoxic DON-3-O-glucoside (D3G) is catalyzed by UDP-glucosyltransferases (UGTs), such as barley UGT13248. We explored the natural diversity of UGT13248 in 496 barley accessions and showed that all carried potential functional alleles of UGT13248, as no genotypes showed strongly increased seedling sensitivity to DON. From a TILLING population, we identified 2 mutant alleles (T368I and H369Y) that, based on protein modeling, likely affect the UDP-glucose binding of UGT13248. In DON feeding experiments, DON-to-D3G conversion was strongly reduced in spikes of these mutants compared to controls, and plants overexpressing UGT13248 showed increased resistance to DON and increased DON-to-D3G conversion. Moreover, field-grown plants carrying the T368I or H369Y mutations inoculated with Fusarium graminearum showed increased FHB disease severity and reduced D3G production. Barley is generally considered to have type II resistance that limits the spread of F. graminearum from the infected spikelet to adjacent spikelets. Point inoculation experiments with F. graminearum showed increased infection spread in T368I and H369Y across the spike compared to wild type, while overexpression plants showed decreased spread of FHB symptoms. Confocal microscopy revealed that F. graminearum spread to distant rachis nodes in T368I and H369Y mutants but was arrested at the rachis node of the inoculated spikelet in wild-type plants. Taken together, our data reveal that UGT13248 confers type II resistance to FHB in barley via conjugation of DON to D3G.


Asunto(s)
Fusarium , Hordeum , Hordeum/genética , Hordeum/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Uridina Difosfato/metabolismo , Enfermedades de las Plantas/genética
7.
Sci Rep ; 13(1): 3936, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894606

RESUMEN

Strategic, sustainable, and ecofriendly alternatives to chemical pesticides are needed to effectively control mosquitoes and reduce the incidence of their vectored diseases. We evaluated several Brassicaceae (mustard family) seed meals as sources of plant derived isothiocyanates produced from the enzymatic hydrolysis of biologically inactive glucosinolates for the control of Aedes aegypti (L., 1762). Five defatted seed meals (Brassica juncea (L) Czern., 1859, Lepidium sativum L., 1753, Sinapis alba L., 1753, Thlaspi arvense L., 1753, and Thlaspi arvense-heat inactivated and three major chemical products of enzymatic degradation (allyl isothiocyanate, benzyl isothiocyanate and 4-hydroxybenzyl isothiocyanate) were assayed to determine toxicity (LC50) to Ae. aegypti larvae. All seed meals except the heat inactivated T. arvense were toxic to mosquito larvae. L. sativum seed meal was the most toxic treatment to larvae (LC50 = 0.04 g/120 mL dH2O) at the 24-h exposure. At the 72-h evaluation, the LC50 values for B. juncea, S. alba and T. arvense seed meals were 0.05, 0.08 and 0.1 g/120 mL dH2O, respectively. Synthetic benzyl isothiocyanate was more toxic to larvae 24-h post treatment (LC50 = 5.29 ppm) compared with allyl isothiocyanate (LC50 = 19.35 ppm) and 4-hydroxybenzyl isothiocyanate (LC50 = 55.41 ppm). These results were consistent with the higher performance of the benzyl isothiocyanate producing L. sativum seed meal. Isothiocyanates produced from seed meals were more effective than the pure chemical compounds, based on calculated LC50 rates. Using seed meal may provide an effective method of delivery for mosquito control. This is the first report evaluating the efficacy of five Brassicaceae seed meals and their major chemical constituent against mosquito larvae and demonstrates how natural compounds from Brassicaceae seed meals can serve as a promising ecofriendly larvicides to control mosquitoes.


Asunto(s)
Aedes , Culicidae , Insecticidas , Animales , Larva , Planta de la Mostaza , Isotiocianatos/farmacología , Semillas/química , Insecticidas/química , Extractos Vegetales/farmacología
8.
Plant Dis ; 107(9): 2687-2700, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36774561

RESUMEN

In the United States and Canada, Fusarium graminearum (Fg) is the predominant etiological agent of Fusarium head blight (FHB), an economically devastating fungal disease of wheat and other small grains. Besides yield losses, FHB leads to grain contamination with trichothecene mycotoxins that are harmful to plant, human, and livestock health. Three genetic North American populations of Fg, differing in their predominant trichothecene chemotype (i.e., NA1/15ADON, NA2/3ADON, and NA3/NX-2), have been identified. To improve our understanding of the newly discovered population NA3 and how population-level diversity influences FHB outcomes, we inoculated heads of the moderately resistant wheat cultivar Alsen with 15 representative strains from each population and evaluated disease progression, mycotoxin accumulation, and mycotoxin production per unit Fg biomass. Additionally, we evaluated population-specific differences in induced host defense responses. The NA3 population was significantly less aggressive than the NA1 and NA2 populations but posed a similar mycotoxigenic potential. Multiomics analyses revealed patterns in mycotoxin production per unit Fg biomass, expression of Fg aggressiveness-associated genes, and host defense responses that did not always correlate with the NA3-specific severity difference. Our comparative disease assay of NA3/NX-2 and admixed NA1/NX-2 strains indicated that the reduced NA3 aggressiveness is not due solely to the NX-2 chemotype. Notably, the NA1 and NA2 populations did not show a significant advantage over NA3 in perithecia production, a fitness-related trait. Together, our data highlight that the disease outcomes were not due to mycotoxin production or host defense alone, indicating that other virulence factors and/or host defense mechanisms are likely involved.


Asunto(s)
Fusarium , Micotoxinas , Tricotecenos , Humanos , Tricotecenos/metabolismo , Micotoxinas/metabolismo , Canadá
9.
Mol Plant Microbe Interact ; 36(8): 478-488, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36853197

RESUMEN

Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most devastating diseases of wheat and barley worldwide. Effectors suppress host immunity and promote disease development. The genome of F. graminearum contains hundreds of effectors with unknown function. Therefore, investigations of the functions of these effectors will facilitate developing novel strategies to enhance wheat resistance to FHB. We characterized a F. graminearum effector, FgNls1, containing a signal peptide and multiple eukaryotic nuclear localization signals. A fusion protein of green fluorescent protein and FgNls1 accumulated in plant cell nuclei when transiently expressed in Nicotiana benthamiana. FgNls1 suppressed Bax-induced cell death when co-expressed in N. benthamiana. We revealed that the expression of FgNLS1 was induced in wheat spikes infected with F. graminearum. The Fgnls1 mutants significantly reduced initial infection and FHB spread within a spike. The function of FgNLS1 was restored in the Fgnls1-complemented strains. Wheat histone 2B was identified as an interacting protein by FgNls1-affinity chromatography. Furthermore, transgenic wheat plants that silence FgNLS1 expression had significantly lower FHB severity than control plants. This study demonstrates a critical role of FgNls1 in F. graminearum pathogenesis and indicates that host-induced gene silencing targeting F. graminearum effectors is a promising approach to enhance FHB resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Fusarium , Fusarium/genética , Triticum/genética , Plantas Modificadas Genéticamente , Núcleo Celular , Enfermedades de las Plantas
10.
Mol Plant Microbe Interact ; 36(5): 294-304, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36653184

RESUMEN

Fusarium graminearum causes Fusarium head blight (FHB) on wheat and barley and contaminates grains with various mycotoxins that are toxic to humans and animals. Deoxynivalenol (DON), a type B trichothecene, is an essential virulence factor that is required for F. graminearum to spread within a wheat head. Recently, novel type A trichothecenes NX-2 and NX-3 (NX) have been found in F. graminearum. NX trichothecenes lack a keto group at the C8 position. To determine if NX trichothecenes play a role similar to that of DON during F. graminearum infection, deletion mutants of TRI5, the first gene for trichothecene biosynthesis, were generated from strains PH-1, NRRL46422, and NRRL44211 (hereafter 44211) representing the 15-acetyl-DON, 3-acetyl-DON, and NX chemotypes. No trichothecene production was detected in any of the Δtri5 mutants in cultures or inoculated wheat heads. FHB symptoms were restricted to the inoculated wheat spikelets when point-inoculated with the Δtri5 mutants, confirming the necessity of NX and DON for FHB spread. Furthermore, whole-head dip inoculations revealed significant reductions in disease and fungal biomass in wheat heads inoculated with 44211Δtri5 compared with 44211. Introduction of the native 44211 TRI5 and a Trichoderma arundinaceum TRI5 ortholog in the 44211Δtri5 mutant complemented trichothecene production in vitro; however, introducing both TRI5 partially restored wild-type levels of NX in infected heads. Our results demonstrate that NX trichothecenes play an important role in Fusarium graminearum initial infection as well as FHB spread. Thus, TRI5 may serve as an ideal target to control plant infection, FHB spread, and mycotoxin production simultaneously. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Fusarium , Micotoxinas , Humanos , Triticum/microbiología , Fusarium/genética , Enfermedades de las Plantas/microbiología
11.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36610406

RESUMEN

Two experiments (EXP) determined the susceptibility of spray-dried egg white (SDEW) to oxidation (heating at 100 °C for 72 h; thermally processed, TP) and whether feeding TP-SDEW, 15-acetyldeoxynivalenol (15-ADON), or peroxidized soybean oil (PSO), singularly or in combination, would affect pig performance, intestinal morphology, digestibility, and markers of oxidative stress in nursery pigs. In EXP 1, 32 pigs (7.14 kg body weight, BW) were placed individually into pens and fed diets containing either 12% SDEW, 6% TP-SDEW plus 6% SDEW, or 12% TP-SDEW. Performance was measured at the end of the 24-d feeding period with biological samples harvested following euthanasia. In EXP 2, 64 pigs (10.6 kg BW) were placed individually into pens and fed diets containing 7.5% soybean oil or PSO, 10% SDEW or TP-SDEW, and diets without or with 3 mg 15-ADON/kg diet in a 2 × 2 × 2 factorial arrangement. Performance was measured at the end of the 28-d feeding period with biological samples harvested following euthanasia. In EXP 1, dietary treatment did not affect pig performance, apparent ileal digestibility of amino acids (AAs), apparent total tract digestibility (ATTD) of gross energy (GE) or nitrogen (N), ileal crypt depth, or villi height:crypt depth ratio (P > 0.05). The effects of feeding TP-SDEW on protein damage in the plasma and liver (P < 0.05) were variable. In EXP 2, there were no three-way interactions and only one two-way interactions among dietary treatments on parameters evaluated. There was no effect of feeding TP-SDEW on ATTD of GE or N, intestinal morphology, or on oxidative markers in the plasma, liver, or ileum (P > 0.05). There was no effect of feeding diets containing added 15-ADON on ATTD of GE, ileal AA digestibility, intestinal morphology, oxidative markers in the plasma, liver, or ileum, or pig performance (P > 0.05). Feeding pigs diets containing PSO resulted in reduced ATTD of GE and N, plasma vitamin E concentration, and pig performance (P < 0.01) but did not affect intestinal morphology or oxidative markers in the liver or ileum (P > 0.05). In conclusion, it was difficult to induce protein oxidation in SDEW and when achieved there were limited effects on performance, digestibility, intestinal morphology, and oxidative status. Furthermore, singly adding 15-A-DON to a diet had no effect on the animal. At last, adding PSO reduces animal performance, but has limited effect on digestibility, intestinal morphology, and oxidative status in nursery pigs.


Swine can be exposed to a variety of nutritional stressors that can affect their well-being and productivity. Three stressors of concern include grains with naturally occurring mycotoxins, oxidized proteins in feedstuffs due to overheating during processing, or lipids that have been damaged by excessive heating. Experiments were conducted to determine how susceptible a previously processed feedstuff was to protein oxidation and whether feeding mycotoxins, oxidized protein, or peroxidized soybean oil would affect growth performance, intestinal morphology, digestibility, and markers of oxidative stress in nursery pigs. Results indicate it was difficult to induce protein oxidation in previously processed protein by heating in a forced air oven, and if some protein oxidation did occur, there is limited effects on growth performance, digestibility, intestinal morphology, and oxidative status in nursery pigs. The data also indicated that adding an isolated mycotoxin was difficult to ensure proper mixing from which to analyze the complete diet from which to conduct animal research. At last, the data show that adding soybean oil that has been thermally processed to contain high concentrations of aldehydes will result in a dramatic reduction in animal performance, but has limited effects on digestibility, intestinal morphology, and oxidative status in nursery pigs.


Asunto(s)
Digestión , Aceite de Soja , Porcinos , Animales , Aceite de Soja/farmacología , Clara de Huevo , Óvulo , Dieta , Estrés Oxidativo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
12.
Front Plant Sci ; 13: 1034406, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518513

RESUMEN

Fusarium head blight, a devastating cereal crop disease, can cause significant yield losses and contaminate grain with hazardous fungal toxins. Concerningly, recent evidence indicates that substantial grain protein content loss is likely to occur in wheat that is moderately resistant to head blight when it is grown at elevated CO2. Although wheat breeders in North America utilize a number of resistance sources and genes to reduce pathogen damage, the Fhb1 gene is widely deployed. To determine whether Fhb1 is associated with the protein content loss at elevated CO2, twelve near-isogenic spring wheat lines from either a susceptible or moderately susceptible genetic background, and with, or without the Fhb1 QTL, were grown at ambient and elevated CO2 conditions. The near-isogenic lines were evaluated for differences in physiology, productivity, and grain protein content. Our results showed that the Fhb1 QTL did not have any significant effect on plant growth, development, yield, or grain protein content at ambient or elevated CO2. Therefore, other factors in the moderately susceptible wheat genetic background are likely responsible for the more severe grain protein loss at elevated CO2.

13.
J Fungi (Basel) ; 8(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36547599

RESUMEN

Farnesol is an isoprenoid intermediate in the mevalonate (MVA) pathway and is produced by the dephosphorylation of farnesyl diphosphate. Farnesol plays a central role in cell growth and differentiation, controls production of ubiquinone and ergosterol, and participates in the regulation of filamentation and biofilm formation. Despite these important functions, studies of farnesol in filamentous fungi are limited, and information on its effects on antifungal and/or biocontrol activity is scarce. In the present article, we identified the Trichoderma harzianum gene dpp1, encoding a diacylglycerol pyrophosphatase that catalyzes production of farnesol from farnesol diphosphate. We analyzed the function of dpp1 to address the importance of farnesol in Trichoderma physiology and ecology. Overexpression of dpp1 in T. harzianum caused an expected increase in farnesol production as well as a marked change in squalene and ergosterol levels, but overexpression did not affect antifungal activity. In interaction with plants, a dpp1-overexpressing transformant acted as a sensitizing agent in that it up-regulated expression of plant defense salicylate-related genes in the presence of a fungal plant pathogen. In addition, toxicity of farnesol on Trichoderma and plants was examined. Finally, a phylogenetic study of dpp1 was performed to understand its evolutionary history as a primary metabolite gene. This article represents a step forward in the acquisition of knowledge on the role of farnesol in fungal physiology and in fungus-environment interactions.

14.
Front Plant Sci ; 13: 1005906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452093

RESUMEN

The trichothecene toxin-producing fungus Trichoderma arundinaceum has potential as a biological control agent. However, most biocontrol studies have focused only on one strain, IBT 40837. In the current study, three Trichoderma isolates recovered from bean-field soils produced the trichothecene harzianum A (HA) and trichodermol, the latter being an intermediate in the HA biosynthesis. Based on phylogenetic analysis, the three isolates were assigned to the species T. arundinaceum. Their genome sequences had a high degree of similarity to the reference IBT 40837 strain, in terms of total genome size, number of predicted genes, and diversity of putative secondary metabolite biosynthetic gene clusters. HA production by these bean-field isolates conferred significant in vitro antifungal activity against Rhizoctonia solani and Sclerotinia sclerotiorum, which are some of the most important bean pathogens. Furthermore, the bean-field isolates stimulated germination of bean seeds and subsequent growth of above ground parts of the bean plant. Transcriptomic analysis of bean plants inoculated with these T. arundinaceum bean-field soil isolates indicated that HA production significantly affected expression of plant defense-related genes; this effect was particularly significant in the expression of chitinase-encoding genes. Together, these results indicate that Trichoderma species producing non-phytotoxic trichothecenes can induce defenses in plants without negatively affecting germination and development.

15.
Appl Microbiol Biotechnol ; 106(21): 7153-7171, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36166052

RESUMEN

The fungus Trichoderma arundinaceum exhibits biological control activity against crop diseases caused by other fungi. Two mechanisms that likely contribute to this activity are upregulation of plant defenses and production of two types of antifungal secondary metabolites: the sesquiterpenoid harzianum A (HA) and the polyketide-derived aspinolides. The goal of the current study was to identify aspinolide biosynthetic genes as part of an effort to understand how these metabolites contribute to the biological control activity of T. arundinaceum. Comparative genomics identified two polyketide synthase genes (asp1 and asp2) that occur in T. arundinaceum and Aspergillus ochraceus, which also produces aspinolides. Gene deletion and biochemical analyses in T. arundinaceum indicated that both genes are required for aspinolide production: asp2 for formation of a 10-member lactone ring and asp1 for formation of a butenoyl subsituent at position 8 of the lactone ring. Gene expression and comparative genomics analyses indicated that asp1 and asp2 are located within a gene cluster that occurs in both T. arundinaceum and A. ochraceus. A survey of genome sequences representing 35 phylogenetically diverse Trichoderma species revealed that intact homologs of the cluster occurred in only two other species, which also produced aspinolides. An asp2 mutant inhibited fungal growth more than the wild type, but an asp1 mutant did not, and the greater inhibition by the asp2 mutant coincided with increased HA production. These findings indicate that asp1 and asp2 are aspinolide biosynthetic genes and that loss of either aspinolide or HA production in T. arundinaceum can be accompanied by increased production of the other metabolite(s). KEY POINTS: • Two polyketide synthase genes are required for aspinolide biosynthesis. • Blocking aspinolide production increases production of the terpenoid harzianum A. • Aspinolides and harzianum A act redundantly in antibiosis of T. arundinaceum.


Asunto(s)
Policétidos , Sesquiterpenos , Trichoderma , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Regulación Fúngica de la Expresión Génica , Antifúngicos/metabolismo , Trichoderma/metabolismo , Terpenos/metabolismo , Sesquiterpenos/metabolismo , Lactonas/metabolismo , Policétidos/metabolismo
16.
Toxins (Basel) ; 14(8)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36006210

RESUMEN

Mycotoxins such as deoxynivalenol introduce a health risk to the food supply and are costly to manage or avoid. Technologies for reducing or eliminating the toxicity of deoxynivalenol could be useful in a variety of processes, such as in preserving the value as animal feed of byproducts of ethanol production. We characterized transformation products of deoxynivalenol that were formed by the combination of a fungal laccase paired with the chemical mediator 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), using chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. Alcohol groups at the C3 and C15 positions of deoxynivalenol were oxidized to ketones, and the chemical mediator became covalently linked to the C4 position. Conditions experienced during gas chromatography led to the dissociation of TEMPO, forming 3,15-diketodeoxynivalenol. Understanding the range of possible modifications to deoxynivalenol and other trichothecenes is a necessary step toward effective remediation of contaminated grain.


Asunto(s)
Micotoxinas , Tricotecenos , Animales , Óxidos N-Cíclicos , Contaminación de Alimentos/análisis , Lacasa , Micotoxinas/análisis , Oxidación-Reducción , Tricotecenos/análisis
17.
BMC Pediatr ; 22(1): 173, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35366839

RESUMEN

BACKGROUND: There is significant variability in clinical pathways available in the diagnostic assessment of ASD, including the order and timing of allied health assessments in relation to paediatrician consultations. Allied health professionals in first-contact models are increasingly used to improve the timeliness of healthcare access, whilst complementing medical specialty workforce shortages. Anecdotally, the implementation of allied health first-contact models in paediatrics has improved waitlists and timely access to healthcare. However, no rigorous studies have been conducted to evaluate the outcomes of these models. This study aims to determine the impacts of an allied health first-contact model on health service use and costs and patient quality of life and satisfaction. METHODS: An open, semi-blinded, multi-centre randomised controlled trial in paediatric outpatient clinics at two Australian metropolitan public hospitals. 56 children (0-16 years) fulfilling the inclusion criteria will be randomised to one of two clinical pathways for assessment of ASD: (1) allied health first-contact or (2) medical first-contact model. Cost outcomes will be collected from both health service and family perspectives. Caregiver-reported outcome measures include: Pediatric Quality of Life Inventory (PedsQL), the EuroQOL Five Dimension Youth Version (EQ-5D-Y), the Autism Family Experience Questionnaire (AFEQ) and Measure of Processes of Care. DISCUSSION: Evidence of improvements in service and consumer centric outcomes will help inform the development and implementation of high-value, evidenced based models of care for the assessment of ASD in children. The findings from this study are expected to contribute to the evidence base around the costs and consequences of allied health first contact models for the assessment of children with ASD in the Australian setting. Findings of this study may help to inform the allocation of health care resources while maintaining, or potentially improving, patient and family quality of life and experience of care. These findings may be useful in informing the wider adoption of these models in Australia and internationally, particularly in healthcare settings where medical specialist shortages exist. TRIAL REGISTRATION: Australia and New Zealand Clinical Trials Register (ANZCTR) ACTRN12621001433897 . Registered: 25th October, 2021.


Asunto(s)
Trastorno del Espectro Autista , Adolescente , Técnicos Medios en Salud , Australia , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/terapia , Niño , Humanos , Estudios Multicéntricos como Asunto , Evaluación de Resultado en la Atención de Salud , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
18.
Front Plant Sci ; 13: 832502, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222488

RESUMEN

Fusarium graminearum is one of the primary causal agents of Fusarium head blight (FHB) on wheat and barley. FHB reduces grain yield and contaminates grain with various mycotoxins, including deoxynivalenol (DON). DON acts as a virulence factor to promote the fungus passing the rachis node and spreading throughout the head of wheat but not barley. Reactive oxygen species (ROS) are one of the earliest defense responses during plant and pathogen interactions. However, the complex roles of ROS during FHB development remain unclear. We investigated immune responses in wheat triggered by chitin, a major component of fungal cell walls. Although no ROS burst was detected in chitin-treated wheat leaves from eight tested varieties, a robust ROS peak was triggered by chitin in tested barley leaves. Interestingly, ROS were induced by chitin in wheat rachises and rachis nodes, which are critical barriers for FHB spread in wheat. We demonstrated that ROS were induced in wheat rachis nodes from both FHB susceptible and resistant wheat varieties. Further, we showed different defense gene expression patterns in rachis nodes and wheat heads treated with chitin, and wheat heads inoculated with F. graminearum. Our study showed the tissue-specific immune responses induced by chitin in wheat, which may play an important role during F. graminearum infection.

19.
Sci Rep ; 12(1): 15, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996967

RESUMEN

The nutritional integrity of wheat is jeopardized by rapidly rising atmospheric carbon dioxide (CO2) and the associated emergence and enhanced virulence of plant pathogens. To evaluate how disease resistance traits may impact wheat climate resilience, 15 wheat cultivars with varying levels of resistance to Fusarium Head Blight (FHB) were grown at ambient and elevated CO2. Although all wheat cultivars had increased yield when grown at elevated CO2, the nutritional contents of FHB moderately resistant (MR) cultivars were impacted more than susceptible cultivars. At elevated CO2, the MR cultivars had more significant differences in plant growth, grain protein, starch, fructan, and macro and micro-nutrient content compared with susceptible wheat. Furthermore, changes in protein, starch, phosphorus, and magnesium content were correlated with the cultivar FHB resistance rating, with more FHB resistant cultivars having greater changes in nutrient content. This is the first report of a correlation between the degree of plant pathogen resistance and grain nutritional content loss in response to elevated CO2. Our results demonstrate the importance of identifying wheat cultivars that can maintain nutritional integrity and FHB resistance in future atmospheric CO2 conditions.


Asunto(s)
Dióxido de Carbono/metabolismo , Ecosistema , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Triticum/química , Triticum/inmunología , Resistencia a la Enfermedad , Magnesio/análisis , Magnesio/metabolismo , Valor Nutritivo , Fósforo/análisis , Fósforo/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Semillas/química , Semillas/clasificación , Semillas/inmunología , Semillas/metabolismo , Triticum/clasificación , Triticum/metabolismo
20.
Plant Dis ; 106(2): 612-622, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34569826

RESUMEN

Mango malformation disease (MMD) caused by Fusarium spp. is an important limiting factor in most production areas worldwide. Fusarium mexicanum and F. pseudocircinatum have been reported as causing MMD in Mexico. These two pathogens also cause a similar disease in Swietenia macrophylla (big-leaf mahogany malformation disease) in central western Mexico, and F. pseudocircinatum was recently reported as causing malformation disease in Tabebuia rosea (rosy trumpet) in the same region. These studies suggest that additional plant species, including weeds, might be hosts of these pathogens. The role that weed hosts might have in the disease cycle is unknown. The objectives of this work were to recover Fusarium isolates from understory vegetation in mango orchards with MMD, identify the Fusarium isolates through DNA sequence data, and determine whether F. mexicanum is capable of inducing disease in the weedy legume Senna uniflora (oneleaf senna). Additional objectives in this work were to compare Fusarium isolates recovered from weeds and mango trees in the same orchards by characterizing their phylogenetic relationships, assessing in vitro production of mycotoxins, and identifying their mating type idiomorph. A total of 59 Fusarium isolates from five species complexes were recovered from apical and lateral buds from four weed species. Two of the species within the F. fujikuroi species complex are known to cause MMD in Mexico. Trichothecene production was detected in five isolates, including F. sulawense and F. irregulare in the F. incarnatum-equiseti species complex and F. boothii in the F. sambucinum species complex. Both mating types were present among mango and weed isolates. This is the first report of herbaceous hosts harboring Fusarium species that cause mango malformation in Mexico. The information provided should prove valuable for further study of the epidemiological role of weeds in MMD and help manage the disease.


Asunto(s)
Fusarium , Enfermedades de las Plantas/microbiología , Malezas/microbiología , Árboles/microbiología , Fusarium/genética , México , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...